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Zooplankton trends: NYDEC Monitoring program
5 sites

Summer (July/August) 1992-2009

Station # |Latitude |Longitude| Depth
(North) (West) | (meters)
Yo 50 | 4500.80 | 731043 | 04

<z 36 | 444537 | 732130 | 50

Y 34 | 444249 | 731361 | 50

Yo 19 | 442826 | 7317.95 | 100

Yo 04 | 4357.10 | 732447 | 10
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Key to Zooplankton of
Lake Champlain
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Deep lake study sites
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Rotifer taxarichness

— South Lake
—— Main Lake
—— Northeast Arm

Grand Isle

— Missisquoi Bay

# of taxa

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
Year
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Deep sites

Deep sites Lake Champlain

Polyarthra
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Keratella quadrata
B Keratella cochlearis
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Year A
Acanthocyclops
o 1992-1996
A Diacyclops thomasi
A 1997-2005
2006-2009 Limeocatanss
Senecella
Tropocyclops
A A
"'CMW
Lept. indti - mendotae |
| ! PK e | Chydorinae |
o — Cladocera
— Rz 2 B (boxed)
Epischura >K
bcyclops O

1992-1996
Pre- zebra mussel

No relationships with
water quality variables
Mihuc et al. 2012
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ABSTRACT

We examined patterns in Lake Champlain zooplankton abundance from 1992 to 2010 using summer data
from five study sites, Rotifer abundance (#/m>) for many common taxa such as Polyarthra, Kellicottia, and
Keratella declined lakewide in the mid-1990s which coincided with the invasion of zebra mussels (Dreissena
polymarpha) into Lake Champlain. The only rotifer toincrease in density following zebra musselinvasion was
Conochilus which is a colonial species. Long-term shifts in copepod and cladoceran community composition
can be attributed to the arrival of another invasive species in 2004-2005, the alewife (Alosa pseud charengus ).
Our results support previous findings that alewife predation can impact larger bodied zooplankton within
temperate lake systems. Following alewife invasion into Lake Champlain, body length of Leptodiaptomus
and Daphnia retrocurva decreased to a size at or below known alewife feeding preferences. In addition, smal-
ler bodied copepods (primarily Diacyclops thomasi) have increased in abundance since alewife invasion while
juvenile copepods have declined. Our results suggest that post-alewife zooplankton patterns are most likely
due to alewife size-selective feeding strategies. Observed long-term changes in zooplankton community
structure have potential implications for the lake's food web dynamics, particularly recent declines in large
bodied zooplankton which may release smaller plankton from top-down control

@ 2011 Published by Elsevier B.V. on behalf of International Association for Great Lakes Research.

Mihuc et al. 2012. Journal of Great Lakes Research.
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Environmental change in Lake Champlain revealed by long-term monitoring
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ABSTRACT

Long-term monitoring data on Lake Champlain spanning the past two to five decades were analyzed to docu-
ment water quality and biological changes in the lake. August mean surface water temperatures increased during
1964-2009 in most Lake Champlain regions at rates (0.035-0.085 “C/year) similar to what has been observed in
the Laurentian Great Lakes and elsewhere. Secchi disk transparency increased by overa meter during 1964-2009
in regions along the main stem of the lake, with much of the inaease occurring after the 1993 zebra mussel in-
vasion. Transparency declined in northeastern regions where zebra mussel densities were lower. No trends in
hypolimnetic dissolved oxygen concentrations or depletion rates were found in any of the deep lake regions during
1990-2009. Sodium concentrations tripled in the Main Lake region since the 1960s. Chloride increased in the
Main Lake by 30% since 1992, but declined in northeastern regions of the lake during recent years, coincident
with reductions in road salt use in Vermont. Total phosphorus concenftrations decreased during 1979-2009
in southern and northwestern lake regions, but increased by 72% in Missisquoi Bay where chlorophyll-a
concentrations doubled over the period. There was a general lakewide trend of decreasing total nitrogen
levels during 1992-2009 that may have been due in part to reductions in atmospheric nitrogen loading
to the watershed. Cyanobacteria increased their dominance within the phytoplankton community in
northeastern regions of the lake since the 1970s.

© 2012 International Association for Great Lakes Research. Published by Elsevier B.V. All rights reserved.
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Water quality variables do not explain
patterns in the Lake’s plankton.
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Lake Champlain Mysid long-term trends
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Zebra Mussels (#/m?)

Lake Champlain Mysid long-term trends
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Summary

* Long-term patterns in Lake Champlain
Zooplankton-

— Zebra Mussel:

* Rotifer declines in richness and abundance- Mid 1990s
« Mysid declines correlate with ZM, Rotifer.... Patterns

Trophic Cascade?



Does climate change influence plankton?

LAKE CHAMPLAIN BASIN
CLIMATE CHANGE
PROJECTIONS

1961- |99o!
LL 2010-2039

2040-2069

BB High-Emissions Scenario

Low-Emissions Scenario

Red arrows track the shift in the Lake
Champlain Basin's summer climate over the
next 60 years if we continue under a high

emisshons scenario. wrack the
shift under a low-emissions scenario

Data Source: Union of Concerned Scientists

Lake Champlain Basin Program, January 2011




Lake Champlain Ice Overs 1816-2013

® No data available
A |Lake did not freeze close completely
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Figure 2: Lake Champlain ice over’s 1816-2013. Data used in the creation of this chart was taken from NOAA.

(http://www.erh.noaa.gov/btv/climo/lakeclose.shtml)



Lake Champlain 10 year average ice cover date
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Figure 3: 10 year averages of Lake Champlain ice out data from 1816-2010. Ice out data obtained from
NOAA (http://www.weather.gov/btv/lakeclose).
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3 Year Average Maximum Epilimnion Depth Station 19
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Figura 11: 3 year averages of maximum epilimniondepth atStation 19 from 1992-2013.
2003-2004 data are missing.
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Figura 12: 3 year averages of minimum hypolimnion depth at Station 19 from 1992-2013.
2003-2004 data are missing.
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Verh, Internat. Verein, Limnol.
2008, vol. 30, Part 2, p. 312-317, Stuttgart, April 2008
© by £. Schwelzarbar'sche Verlagsbuchhandiung 2008

Cyanobacteria in the sixth Great Lake: geospatial pigment
mapping and phytoplankton community composition in
Mississquoi Bay, Lake Champlain

Timothy B. Mihuc, Carnanne Parshyn, Sean Thomas, Greg Boyer, Mike Satchwell, Jeffry Jones, and
Meghan Greene

314 Verh. Internat. Verein. Limnol. 30
Tuly 27

Phycocyanin
Concentration (ug/lL)
712706

* 025

+ %80

+  51-10

Fig. 2. Bloom map of Missisquoi Bay, Lake Champlain, for 27 July 2006. Phycocyanin concentration (ig/L) is shown along the

ing track with phytoplankton ity composits » composition) at selected locations in the inset graphs. Bar graph
legend indicates (from top to bottom) protozoa {entrics |-3). diatoms (entries 4-8; brown-yellow shading), desmids (St um,
pink), green algae (entries 10-14; green shades), and C. b 1a (last 3 entries; blue shading).




7-12-07

Temperature oC 27
71206

GPSfix Events

EUKformat, Temperature'C 26 B

® 2178-2275
220830
23 01-24.66
*  MBB.2548
® 2630.76.158

threshold

Temperature (Celsius)

22 A

21

T T T T T T 1
20 30 40 50 60 70 80 90 100
Phycocyanin (ugi)

N

w E

—— Actars
0 700140 250 4.0 5500 S

Species composition for all sites in Missisquoi Bay was dominated by diatoms, namely
Aulacoseira.

Microcystis spp. and Aphanizomenon spp. were present in low abundance at Venise Bay, QC
and Brochet’s River, QC, which may be attributed to the higher water temperatures in that
part of the bay on this date

A temperature threshold may exist for large bloom formation.
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The effects of temperature and nutrients on the growth and dynamics of toxic and
non-toxic strains of Microcystis during cyanobacteria blooms

Timothy W. Davis?, Dianna L. Berry?, Gregory L. Boyer®, Christopher J. Gobler **

“School of Marine and Atmospheric Sciences, Stony Brook University, Southampton, NY, United States
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ARTICLE INFO ABSTRACT

Article history: In temperate latitudes, toxic cyanobacteria blooms often occur in eutrophied ecosystems during warm
Received 26 November 2008 months. Many common bloom-forming cyanobacteria have toxic and non-toxic strains which co-occur
Received in revised form 13 February 2009 and are visually indistinguishable but can be quantified molecularly. Toxic Microcystis cells possess a

Accepted 14 February 2009 suite of microcystin synthesis genes (mcyA-mcy/), while non-toxic strains do not. For this study, we

assessed the temporal dynamics of toxic and non-toxic strains of Microcystis by quantifying the

Keywn "rd'_"", microcystin synthetase gene (mcyD) and the small subunit ribosomal RNA gene, 165 (an indicator of total
m:ggg’: :;f] Microcystis), from samples collected from four lakes across the Northeast US over a two-year period.
Eutrophication Nutrient concentrations and water quality were measured and experiments were conducted which
Climate change examined the effects of elevated levels of temperatures (+4 "C), nitrogen, and phosphorus on the growth
Global warming rates of toxic and non-toxic strains of Microcystis. During the study, toxic Microcystis cells comprised
Nutrient loading between 12% and 100% of the total Microcystis population in Lake Ronkonkoma, NY, and between 0.01%
Mcy and 6% in three other systems. In all lakes, molecular quantification of toxic (mcyD-possessing)
Microcystin synthetase Microcystis was a better predictor of in situ microcystin levels than total cyanobacteria, total Microcystis,
Harmful algal bloom chlorophyll a, or other factors, being significantly correlated with the toxin in every lake studied.

Experimentally enhanced temperatures yielded significantly increased growth rates of toxic Microcystis
in 83% of experiments conducted, but did so for non-toxic Microcystis in only 33% of experiments,
suggesting that elevated temperatures yield more toxic Microcystis cells and/or cells with more mcyD
copies per cell, with either scenario potentially yielding more toxic blooms. Furthermore, concurrent
increases in temperature and P concentrations yielded the highest growth rates of toxic Microcystis cells
in most experiments suggesting that future eutrophication and climatic warming may additively
promote the growth of toxic, rather than non-toxic, populations of Microcystis, leading to blooms with
higher microcystin content.



Elevated temperature

Fig. 6. Net growth rates of toxic
Microcystis (right half of figure)
and nontoxic Microcystis (left half
of figure) during nutrient
amendment experiments (t = 72 h)
conducted in various systems
during the 2005 and 2006 field
seasons at ambient (white bars) and
elevated (black bars) temperatures.
C: control; N: nitrate; P:
rthophosphate. Error bars represent
1 SD of triplicate experimental
bottles.

Davis et al. 2009
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“During the Lake Champlain
experiment, ambient water
temperatures were 24.9 2.0 8C.
Experimentally enhanced temperatures
(29.1 1.3 8C) significantly increased
the growth rates of

both toxic and non-toxic Microcystis
populations by 80% and 101%
respectively (p < 0.001; Table 3; Fig.
6).”

“Finally, nutrients (N or P)
interacted with temperature, to
enhance toxic Microcystis growth
rates (p < 0.01; Table 3; Fig. 6)
with the enhanced P and
temperature treatment yielding
the highest growth rates of any
population among all treatments
(1.17 0.03d1).”



What do we know?

* Invasive species (Zebra mussel) impact
planktonic communities

« Some trends (shifts in phytoplankton) may
be linked to climate change.

« Water quality variables do not explain long-
term patterns in the Lake’s zooplankton



Lake Champlain zooplankton
community dynamics
following an extreme
flood event

Erin Hayes-Pontius
M.S. Natural Science
research thesis
SUNY Plattsburgh
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Figure 1: Lake Champlain historic water levels 1995-2013. The green line represents the national weather service flood level.
Data used in the creation of this chart was taken from NOAA. (http://www.erh.noaa.gov/btv/html/lake.php)
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These photos are from the Lake Champlain Basin Program




The flooding

e Lack of literature from
large lakes

« What happens?




Flood responses

e Qverall decreases In
density

e SOMe groups may
benefit
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Flood responses

* Not everyone agrees

— Rotifers increase in density
« Kirk and Gilbert 1990
» Godlewska et al. 2003

— Rotifers do not respond
 Pollard et al. 1998




Flood responses

* Everyone agrees...
— Arruda et al. 1983
— Hart 1986
— Threlkeld 1986
— Kirk and Gilbert 199
— Dejen et al. 2004
— Schou et al. 2009
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Results- thermal structure
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Results- Secchi depth
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Results- chlorophyll-a concentrations
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Density (#/m3)

Results- total zooplankton density
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Types of responses
Immediate and lasting negative response

Categor Taxon Response 2010 2011 2012

Asplanchnid rotifer  Asplanchna priodonta Immediate and lasting
disadvantage

Brachionid rotifer Keratella cochlearis

Synchaetid rotifer Polyarthra spp.

Daphnid cladoceran Daphnia retrocurva Delayed disadvantage A A Y
Calanoid copepod Diaptomidae A A Vv
Cyclopoid copepod  Mesocyclops edax > A Vv
Conochilid rotifer Conochilus unicornis Immediate A v

Synchaetid rotifer Ploesoma spp. disadvantage A Vv A
Daphnid cladoceran Ceriodaphnia reticulata Delayed advantage Y Y A
Bosminid cladoceran Eubosmina coregoni Vv Vv A

<
>

Cyclopoid copepod  Tropocyclops prasinus mexicanus >




Immediate and lasting negative response
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Delayed negative response

Category Taxon Response 2010 2011 2012
Asplanchnid rotifer  Asplanchna priodonta Irpmediate and lasting A v v
Brachionid rotifer Keratella cochlearis disadvantage A Vv Vv
Synchaetid rotifer Polyarthra spp. A Vv Y
Daphnid cladoceran Daphnia retrocurva Delayed disadvantage A A Y
Calanoid copepod Diaptomidae A A Vv
Cyclopoid copepod  Mesocyclops edax > A Y
Conochilid rotifer Conochilus unicornis Immediate A v
Synchaetid rotifer Ploesoma spp. disadvantage A Vv A
Daphnid cladoceran Ceriodaphnia reticulata Delayed advantage Y Y A
Bosminid cladoceran Eubosmina coregoni Vv Vv A
Cyclopoid copepod  Tropocyclops prasinus mexicanus > Y A




Delayed negative response
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Daphnia and turbidity

 Daphnia feeding rates decrease as
sediment concentration Increases
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Immediate negative response

Category Taxon Response 2010 2011 2012
Asplanchnid rotifer  Asplanchna priodonta Irpmediate and lasting A v v
Brachionid rotifer Keratella cochlearis disadvantage A Vv Vv
Synchaetid rotifer Polyarthra spp. A Vv Y
Daphnid cladoceran Daphnia retrocurva Delayed disadvantage A A Y
Calanoid copepod Diaptomidae A A Vv
Cyclopoid copepod  Mesocyclops edax > A v
Conochilid rotifer Conochilus unicornis Immediate A v
Synchaetid rotifer Ploesoma spp. disadvantage A Vv A
Daphnid cladoceran Ceriodaphnia reticulata Delayed advantage Y Y A
Bosminid cladoceran Eubosmina coregoni Vv Vv A

Cyclopoid copepod  Tropocyclops prasinus mexicanus > Y A




Immediate negative response
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Delayed positive response

Category Taxon Response 2010 2011 2012
Asplanchnid rotifer  Asplanchna priodonta Immediate and lasting A v v
Brachionid rotifer Keratella cochlearis disadvantage A Vv v
Synchaetid rotifer Polyarthra spp. A Vv Y
Daphnid cladoceran Daphnia retrocurva Delayed disadvantage A A Y
Calanoid copepod Diaptomidae A A Vv
Cyclopoid copepod  Mesocyclops edax > A Vv
Conochilid rotifer Conochilus unicornis Immediate A v
Synchaetid rotifer Ploesoma spp. disadvantage A Vv A

Daphnid cladoceran
Bosminid cladoceran

Cyclopoid copepod

Ceriodaphnia reticulata advantage

Eubosmina coregoni

Tropocyclops prasinus mexicanus




Delayed positive response
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Ceriodaphnia vs. Daphni
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Density (#/ms)
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So, everything’s always changing, right?
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Neutral response

Category Taxon Response 2010 2011 2012
Asplanchnid rotifer  Asplanchna priodonta Irpmediate and lasting A v v
Brachionid rotifer Keratella cochlearis disadvantage A Vv Y
Synchaetid rotifer Polyarthra spp. A Vv Y
Daphnid cladoceran Daphnia retrocurva Delayed disadvantage A A Y
Calanoid copepod Diaptomidae A A Vv
Cyclopoid copepod  Mesocyclops edax > A Vv
Conochilid rotifer Conochilus unicornis Immediate A v

disadvantage

Bosminid cladoceran Bosmina longirostris Neutral response >
Cyclopoid copepod  Diacyclops thomasi >
Brachionid rotifer Kellicottia longispina >
Brachionid rotifer Notholca laurentiae > >
Daphnid cladoceran Ceriodaphnia reticulata Delayed advantage Y Y A
Bosminid cladoceran Eubosmina coregoni Vv v A
Cyclopoid copepod  Tropocyclops prasinus mexicanus > Vv A
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Diacyclops thomasi

the dominant copepod since 1930



Is early seasonality an advantage In
flood years?
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Summary
— Long-term patterns:

Rotifer declines in richness and abundance- Mid 1990s

« Mysid declines = Zebra Mussel, Rotifer relationships

« Phytoplankton community shifts
» long-term climate change?

--- Flooding / climate change:

Community shifts based on autecological
responses.



Why you should care about plankton

McDonald Creek

Flathead Lake
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Future Invasive Zooplankton
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Cercopagis (Fishhook waterflea)
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Bythotrephes
(Spiny waterflea)

1.0 mm






Lake George= Spiny waterflea source
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STOP AQUATIC
HITCHHIKERS!

Prevent the transport of nuisance species
Clean all recreational equipment.
www PratectYourWaters net

Water Chestnut

«Triangular leaves & toothed edges
« Forms dense floating mats

« Seeds & plants attach totrailers

Zebra/Quagga Mussel

«Tiry, "D"or oval shaped striped shells
«Covers hard surfaces &sharp shells cut feat
« Shells attach to plants & boat bottoms

Euraslan Watermilfoll

« Feathery leaves in whorls of 4

« Forms dense beds

« Plant fragments attach to boats & trailers

Spiny Waterfiea

«Tiny, ¥2* crustacean with long, barbed tail
« Competes with fish forfood

« Masses collect on fishing line

Hydrilla

« Blade-like lzaves in whorls of 4-8

« Formsdense bads

» Plant fragments attach to boats & trailers

Live Bait

« Non-native crayfish and minnows

« Altars aquatic habitats & may carry pathogens
« Often released orillegally stocked

B Ut 55, S b g vy

The Wtershed Stewarcship Frogram {(WSF) & a coll it hon progr
offerec at watar access sites in $he Adrondack anc Champiain tegions to prevent
the spread of aguatc Invasive speces and help preserve the Integrity of water
rescurces and local sconamies
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Adizrcac Pk Lake Gezege Labs Chargh drzeclad hed  NYSCepeof
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Cormrvaton
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ADVENTURES
or
CAPTAIN FISHHOOK
WATERFLEA

THE INVASION
OF LAKE CHAMPLAIN

By Alexandra Mihalek, Carrianne Pershyn and Casey
Binggeli (Edited by Dr. Timothy B. Mihuc)



Lake Trout

Deep water: Fish

Rotifera
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Alewife

Marine member of herring family

Discovered in Lake St. Catherine in
1997

Compete with native fish for food

Preys directly on eggs and young
native fish species

Interferes with trout & salmon
reproduction

Unstable forage base, periodic die-
offs

Quebec — Aug 2003
Vermont — July 2004
Management options?




THE LAKE CHAMPLAIN BASIN ATLAS

Lake Champlain Region

Map by Morthern Cartographic.



