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Introduction

• 200 km in length, 

• surface area 1130 km2

• mean depth 19.4 meters

• 3 year water residence time
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Station # Latitude

(North)

Longitude

(West)

Depth

(meters)

50 45 00.80 73 10.43 04

36 44 45.37 73 21.30 50

34 44 42.49 73 13.61 50

19 44 28.26 73 17.95 100

04 43 57.10 73 24.47 10

Zooplankton trends: NYDEC Monitoring program 

5 sites

Summer (July/August) 1992-2009
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Copepods

Acanthocyclops LeptodiaptomusDiacyclops Mesocyclops

Key to Zooplankton of 

Lake Champlain



Cladocerans
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Mihuc et al. 2012.  Journal of Great Lakes Research.



Lake Champlain long-term trends
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Water quality variables do not explain 

patterns in the Lake’s plankton.  
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Lake Champlain Mysid long-term trends
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Lake Champlain Mysid long-term trends
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Lake Champlain Mysid long-term trends

Year

1992 1994 1996 1998 2000 2002 2004 2006 2008 2010

M
y
s

id
 a

b
u

n
d

a
n

c
e

 (
#

/m
2

)

0

200

400

600

800

1000

Z
e

b
ra

 M
u

s
s

e
ls

 (
#

/m
2
)

0

50000

100000

150000

200000

250000

Mysids (Summer)

Zebra Mussel

r2 = 0.68, 

p = <0.001
Mysid versus zebra mussel abundance Lake Champlain 

ln Mysid abundance 

4.0 4.5 5.0 5.5 6.0 6.5 7.0

ln
 Z

e
b
ra

 M
u
s
s
e
ls

 (
#
/m

2
)

0

2

4

6

8

10

12

14

16

18



Asplanchna

Kerratella

Polyarthra

Conochilus

Rotifera

Diaphanosoma 

birgei

Bosmina sp.

Daphnia 

mendotae Daphnia 

retrocurva

Cladocera

Acanthocyclops

Diacyclops

Mesocyclops

Leptodiaptomus

Copepoda

Filtration effect

Order of magnitude decline 

in abundance

Can we model 

these 

relationships?



Summary

• Long-term patterns in Lake Champlain 

Zooplankton-

– Zebra Mussel:

• Rotifer declines in richness and abundance- Mid 1990s

• Mysid declines correlate with ZM, Rotifer…. Patterns

Trophic Cascade?



Does climate change influence plankton?
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Figure 2: Lake Champlain ice over’s 1816-2013. Data used in the creation of this chart was taken from NOAA. 
(http://www.erh.noaa.gov/btv/climo/lakeclose.shtml)



Figure 3: 10 year averages of Lake Champlain ice out data from 1816-2010. Ice out data obtained from 
NOAA  (http://www.weather.gov/btv/lakeclose). 
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An In-Depth Comparison of Lake Champlain 

Phytoplankton Community Composition and 

Distribution from 1970 to 2005

Shelley L. Bouyea
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• Species composition for all sites in Missisquoi Bay was dominated by diatoms, namely 
Aulacoseira. 

• Microcystis spp. and Aphanizomenon spp. were present in low abundance at Venise Bay, QC 
and Brochet’s River, QC, which may be attributed to the higher water temperatures in that 
part of the bay on this date 

• A temperature threshold may exist for large bloom formation.





Davis et al. 2009

“Finally, nutrients (N or P)

interacted with temperature, to 

enhance toxic Microcystis growth

rates (p < 0.01; Table 3; Fig. 6) 

with the enhanced P and 

temperature treatment yielding 

the highest growth rates of any 

population among all treatments 

(1.17  0.03 d1).”

Fig. 6. Net growth rates of toxic 

Microcystis (right half of figure) 

and nontoxic Microcystis (left half 

of figure) during nutrient 

amendment experiments (t = 72 h)

conducted in various systems 

during the 2005 and 2006 field 

seasons at ambient (white bars) and 

elevated (black bars) temperatures. 

C: control; N: nitrate; P: 

rthophosphate. Error bars represent  

1 SD of triplicate experimental 

bottles.

“During the Lake Champlain 

experiment, ambient water

temperatures were 24.9  2.0 8C. 

Experimentally enhanced temperatures

(29.1  1.3 8C) significantly increased 

the growth rates of

both toxic and non-toxic Microcystis

populations by 80% and 101%

respectively (p < 0.001; Table 3; Fig. 

6).”

Non-toxic    Toxic

Elevated temperature



What do we know?

• Invasive species (Zebra mussel) impact 

planktonic communities

• Some trends (shifts in phytoplankton) may 

be linked to climate change.  

• Water quality variables do not explain long-

term patterns in the Lake’s zooplankton



Lake Champlain zooplankton

community dynamics

following an extreme 

flood event

Erin Hayes-Pontius
M.S. Natural Science 
research thesis
SUNY Plattsburgh
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Figure 1: Lake Champlain historic water levels 1995-2013. The green line represents the national weather service flood level.
Data used in the creation of this chart was taken from NOAA. (http://www.erh.noaa.gov/btv/html/lake.php)
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Sediment plumes

These photos are from the Lake Champlain Basin Program



The flooding

• Lack of literature from 

large lakes

• What happens?



Flood responses

• Overall decreases in 

density

• Some groups may 

benefit

Godlewska et al. 

2003



Flood responses

• Not everyone agrees

– Rotifers increase in density

• Kirk and Gilbert 1990

• Godlewska et al. 2003

– Rotifers do not respond

• Pollard et al. 1998



Flood responses

• Everyone agrees…

– Arruda et al. 1983

– Hart 1986

– Threlkeld 1986

– Kirk and Gilbert 1990

– Dejen et al. 2004

– Schou et al. 2009



Results- vertical profiles
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Results- thermal structure
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Results- Secchi depth
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Results- chlorophyll-a concentrations
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Results- total zooplankton density
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Category Taxon Response 2010 2011 2012

Asplanchnid rotifer Asplanchna priodonta Immediate and lasting 
disadvantage

^ v v

Brachionid rotifer Keratella cochlearis ^ v v

Synchaetid rotifer Polyarthra spp. ^ v v

Daphnid cladoceran Daphnia retrocurva Delayed disadvantage ^ ^ v

Calanoid copepod Diaptomidae ^ ^ v

Cyclopoid copepod Mesocyclops edax > ^ v

Conochilid rotifer Conochilus unicornis Immediate 
disadvantage

^ v ^

Synchaetid rotifer Ploesoma spp. ^ v ^

Daphnid cladoceran Ceriodaphnia reticulata Delayed advantage v v ^

Bosminid cladoceran Eubosmina coregoni v v ^

Cyclopoid copepod Tropocyclops prasinus mexicanus > v ^

Immediate and lasting negative response
Types of responses



Immediate and lasting negative response
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Delayed negative response

Category Taxon Response 2010 2011 2012

Asplanchnid rotifer Asplanchna priodonta Immediate and lasting 
disadvantage

^ v v

Brachionid rotifer Keratella cochlearis ^ v v

Synchaetid rotifer Polyarthra spp. ^ v v

Daphnid cladoceran Daphnia retrocurva Delayed disadvantage ^ ^ v

Calanoid copepod Diaptomidae ^ ^ v

Cyclopoid copepod Mesocyclops edax > ^ v

Conochilid rotifer Conochilus unicornis Immediate 
disadvantage

^ v ^

Synchaetid rotifer Ploesoma spp. ^ v ^

Daphnid cladoceran Ceriodaphnia reticulata Delayed advantage v v ^

Bosminid cladoceran Eubosmina coregoni v v ^

Cyclopoid copepod Tropocyclops prasinus mexicanus > v ^
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Daphnia and turbidity

Arruda et al. 1983

• Daphnia feeding rates decrease as 

sediment concentration increases 



Immediate negative response

Category Taxon Response 2010 2011 2012

Asplanchnid rotifer Asplanchna priodonta Immediate and lasting 
disadvantage

^ v v

Brachionid rotifer Keratella cochlearis ^ v v

Synchaetid rotifer Polyarthra spp. ^ v v

Daphnid cladoceran Daphnia retrocurva Delayed disadvantage ^ ^ v

Calanoid copepod Diaptomidae ^ ^ v

Cyclopoid copepod Mesocyclops edax > ^ v

Conochilid rotifer Conochilus unicornis Immediate 
disadvantage

^ v ^

Synchaetid rotifer Ploesoma spp. ^ v ^

Daphnid cladoceran Ceriodaphnia reticulata Delayed advantage v v ^

Bosminid cladoceran Eubosmina coregoni v v ^

Cyclopoid copepod Tropocyclops prasinus mexicanus > v ^
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Delayed positive response

Category Taxon Response 2010 2011 2012

Asplanchnid rotifer Asplanchna priodonta Immediate and lasting 
disadvantage

^ v v

Brachionid rotifer Keratella cochlearis ^ v v

Synchaetid rotifer Polyarthra spp. ^ v v

Daphnid cladoceran Daphnia retrocurva Delayed disadvantage ^ ^ v

Calanoid copepod Diaptomidae ^ ^ v

Cyclopoid copepod Mesocyclops edax > ^ v

Conochilid rotifer Conochilus unicornis Immediate 
disadvantage

^ v ^

Synchaetid rotifer Ploesoma spp. ^ v ^

Daphnid cladoceran Ceriodaphnia reticulata Delayed advantage v v ^

Bosminid cladoceran Eubosmina coregoni v v ^

Cyclopoid copepod Tropocyclops prasinus mexicanus > v ^
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Who we might see more of:



Ceriodaphnia vs. Daphnia



So, everything’s always changing, right?
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Neutral response

Category Taxon Response 2010 2011 2012

Asplanchnid rotifer Asplanchna priodonta Immediate and lasting 
disadvantage

^ v v

Brachionid rotifer Keratella cochlearis ^ v v

Synchaetid rotifer Polyarthra spp. ^ v v

Daphnid cladoceran Daphnia retrocurva Delayed disadvantage ^ ^ v

Calanoid copepod Diaptomidae ^ ^ v

Cyclopoid copepod Mesocyclops edax > ^ v

Conochilid rotifer Conochilus unicornis Immediate 
disadvantage

^ v ^

Synchaetid rotifer Ploesoma spp. ^ v ^

Bosminid cladoceran Bosmina longirostris Neutral response > > >

Cyclopoid copepod Diacyclops thomasi > > >

Brachionid rotifer Kellicottia longispina > > >

Brachionid rotifer Notholca laurentiae > > >

Daphnid cladoceran Ceriodaphnia reticulata Delayed advantage v v ^

Bosminid cladoceran Eubosmina coregoni v v ^

Cyclopoid copepod Tropocyclops prasinus mexicanus > v ^
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Diacyclops thomasi

the dominant copepod since 1930



Is early seasonality an advantage in 

flood years?



Summary
– Long-term patterns:

Rotifer declines in richness and abundance- Mid 1990s

• Mysid declines  Zebra Mussel, Rotifer relationships

• Phytoplankton community shifts

» long-term climate change? 

--- Flooding / climate change:

Community shifts based on autecological

responses. 



Why you should care about plankton

Zooplankton

America



Questions?



Future Invasive Zooplankton

J. Gunderson, MNSG





Lake George= Spiny waterflea source
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BENTHOS

Oligochaeta – Chironomidae – Hexagenia sp.

Bacterial-Detrital Complex

Rainbow smelt

Lake Trout

Palmellococcus

Pediastrum

Spirogyra

Green Algae
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Asterionella
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Rock Bass
Pumpkinseed sunfish

Yellow Perch

Longnose Gar

Walleye

Smallmouth Bass

Channel Catfish

Sturgeon

Black Bullhead

Sculpin
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Crayfish

Cylindrospermum

Anabaena

Nostoc

Spirulina

Blue-Green Algae

Microcystis

Northern Pike

Emerald Shiner

Bowfin



Alewife
• Marine member of  herring family

• Discovered in Lake St. Catherine in 
1997

• Compete with native fish for food

• Preys directly on eggs and young 
native fish species

• Interferes with trout & salmon 
reproduction

• Unstable forage base, periodic die-
offs

• Quebec – Aug 2003

• Vermont – July 2004

• Management options?




