Lessons learned from three decades of water quality monitoring on Lake Champlain

Matthew Vaughan, PhD
Lake Champlain Basin
Program
March 29, 2021
New York Citizens
Advisory Committee

mvaughan@lcbp.org

Lake Champlain long-term monitoring program

How is the lake's water quality? Is it changing?

Chemical measurements

- Alkalinity
- Aluminum
- Calcium
- Chloride
- Chlorophyll
- Conductivity
- Dissolved organic carbon
- Dissolved oxygen
- Dissolved phosphorus
- Dissolved silica
- Iron
- Magnesium
- pH
- Potassium
- Sodium
- Total nitrogen
- Total phosphorus
- Total suspended solids

Physical measurements

- Thermocline depth
- Water temperature
- Secchi depth

Biological measurements

- Net phytoplankton density, biovolume, and community composition
- Net zooplankton density, biovolume, and community composition

Calculated metrics

- Molar ratio TN:TP
- Hypolimnetic DO depletion (June 1 – Sept 1)

In-lake analyses

- 25 parameters
- 110,000 observations
- 600,000 sonde measurements
- Grouping, stats, trends

Tributary analyses

71,000 measurements

Analyzed

- Total and dissolved phosphorus
- Total nitrogen
- Chloride
- Suspended sediment

Determined

- Concentration
- Load
- Trends

- 18 tributaries
- Long-term monitoring program samples
- WRTDS model to predict concentration -> load
- Reduce influence of annual flow variability
- Probability of trend

Long-term monitoring: 22 tributaries

TMDL for phosphorus: 13 lake segments

How can we track progress?

Phosphorus takeaways

In the lake:

- No trends for most lake segments
- Increased lake-wide until recent decreases

Tributary loading:

- Highly variable
- Loading remains too high to meet water quality goals
- No trends in 10 out of 18 tributaries
- Decreasing trends in three rivers, variable timeframes
- Increasing trends in five rivers, variable timeframes

Flow-normalized total nitrogen yield

Flow-normalized total nitrogen yield

Nitrogen takeaways

In the lake

- Decreased lake-wide
- Trends at deep sites have shifted in the past decade

Tributaries:

- Pike River
- Trends for 14 out of 18 tributaries
- From 2004 2017:
 - Six rivers decreased
 - Two rivers increased
 - Ten rivers had no trend

Flow-normalized chloride yield

Chloride takeaways

In the lake

- Well below EPA thresholds
- May be nearing double background concentration
- Changing, with increases in the past decade

Tributary loading

- Increasing trends for 16 out of 18 tributaries
- Two rivers show full record decreases

Flow-normalized total suspended solids yield

Suspended sediment takeaways

Tributary loading

- The model did not predict loads well for several tributaries
- Increasing trends for 5
 out of 18 tributaries, all in
 Vermont / Quebec
- Some increases have recently slowed or stopped
- Recent decreasing trends in Little Ausable and Little Chazy

Next steps

- Publish in-lake results, update tributary results
- State of the Lake report
- Real-time in situ monitoring

Questions?

mvaughan@lcbp.org

Lake Champlain tributary loading report (2019): bit.ly/2wDAQ17

